- combinatorial identities
- Математика: комбинаторные тождества
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Combinatorial principles — In proving results in combinatorics several useful combinatorial rules or combinatorial principles are commonly recognized and used. The rule of sum, rule of product, and inclusion exclusion principle are often used for enumerative purposes.… … Wikipedia
Combinatorial species — In combinatorial mathematics, the theory of combinatorial species is an abstract, systematic method for analysing discrete structures in terms of generating functions. Examples of discrete structures are (finite) graphs, permutations, trees, and… … Wikipedia
List of mathematical identities — This page lists identities in the sense of mathematics, that is, identically true relations holding in algebra or between special functions.* Cassini s identity * Difference of two squares * Bézout s identity * Euler s identity * Vandermonde s… … Wikipedia
Rogers–Ramanujan identities — In mathematics, the Rogers–Ramanujan identities are a set of identities related to basic hypergeometric series. They were discovered by harvs|txt|first=Leonard James|last= Rogers|authorlink=Leonard James Rogers|year=1894 and subsequently… … Wikipedia
Newton's identities — In mathematics, Newton s identities, also known as the Newton–Girard formulae, give relations between two types of symmetric polynomials, namely between power sums and elementary symmetric polynomials. Evaluated at the roots of a monic polynomial … Wikipedia
Hypergeometric identities — In mathematics, hypergeometric identities are equalities involving sums over hypergeometric terms, i.e. the coefficients occurring in hypergeometric series. These identities occur frequently in solutions to combinatorial problems, and also in the … Wikipedia
Bernoulli number — In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections to number theory. They are closely related to the values of the Riemann zeta function at negative integers. There are several conventions for… … Wikipedia
John Riordan — (1902 ndash; August 28, 1988) was an American mathematician and author of major early works in combinatorics, particularly Introduction to Combinatorial Analysis and Combinatorial Identities . He worked most of his life at Bell Labs, from 1926 (a … Wikipedia
Enumerative combinatorics — is an area of combinatorics that deals with the number of ways that certain patterns can be formed. Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite… … Wikipedia
Hypergeometric distribution — Hypergeometric parameters: support: pmf … Wikipedia
Representation theory — This article is about the theory of representations of algebraic structures by linear transformations and matrices. For the more general notion of representations throughout mathematics, see representation (mathematics). Representation theory is… … Wikipedia